Analysis of Antibacterial and Antifungal Properties on the Surface of Acrylic Solid
The antibacterial and antifungal performance of acrylic solid surface is influenced by resin modification technology, types of additives and environmental conditions. The following analysis is conducted from three aspects: antibacterial mechanism, antifungal performance and influencing factors:
First, the sources and mechanisms of antibacterial properties
Antibacterial agent doping
Antibacterial functions can be endowed to the coating by introducing inorganic antibacterial agents (such as zinc oxide, silver ions) or organic antibacterial agents (such as quaternary ammonium salts) into acrylic resin. For instance, zinc oxide can generate photocatalytic activity under ultraviolet light irradiation, releasing zinc ions to destroy the cell membranes of bacteria, thereby inhibiting bacterial proliferation. Experiments show that the acrylic coating containing zinc oxide can still maintain high antibacterial activity after simulating daily wear. The release of zinc ions significantly increases after wear treatment, and the photocatalytic antibacterial effect is outstanding.
Surface modification technology
Антибактериальные группы вводятся на поверхность акриловой смолы посредством химической прививки или физического смешивания. Например, смешивание силоксансодержащих антибактериальных агентов с акриловыми смолами может наделить поверхность покрытия гидрофобностью и антибактериальными свойствами, уменьшая бактериальную адгезию. Кроме того, введение нано-антибактериальных агентов (таких как нано-серебряные) может дополнительно повысить производительность антибактериальных результатов, но их диспергируемость необходимо контролировать, чтобы избежать агломерации.
Экологически отзывчивый антибактериальный
Некоторые акриловые покрытия могут вызывать антибактериальные механизмы с помощью стимулов окружающей среды, таких как влажность и свет. Например, в влажной среде скорость высвобождения антибактериального агента при ускорении покрытия ускоряется, тем самым усиливая антибактериальный эффект. Эта характеристика подходит для антибактериальных требований в средах с высокой влажностью, таких как ванные комнаты и кухни.
Во-вторых, производительность и влиятельные факторы антимолд-эффективности
Антимолд механизм
Производительность акрилового покрытия в основном зависит от его плотной поверхностной структуры и низкой скорости поглощения воды. Например, путем оптимизации формулы смолы и процесса отверждения, пористость поверхности покрытия может быть уменьшена, тем самым ингибируя адгезию и рост споров плесени. Кроме того, добавление фунгицидов (таких как изотиазолиноны) может дополнительно усилить эффект антимолда, но внимание следует уделять их совместимости с смолой.
Влияние условий окружающей среды
The growth of mold requires the satisfaction of three elements: moisture, temperature and nutrient substrate. For instance, in an environment with a temperature ranging from 25 to 30℃ and a humidity of ≥80%, the growth rate of mold significantly accelerates. The acrylic coating should have good water resistance and breathability to prevent water accumulation on the surface from causing mold growth. In addition, the pH value of the coating surface also affects the anti-mold performance. A neutral or weakly alkaline environment is more conducive to inhibiting mold growth.
Long-term durability
The anti-mold performance of acrylic coating may decline over time. For instance, in outdoor environments, ultraviolet radiation and rain erosion may cause the coating surface to age and the anti-mold agent to be lost, thereby reducing the anti-mold effect. Therefore, the service life of the coating needs to be prolonged by adding light stabilizers and weather-resistant resins.
Third, the key factors affecting the antibacterial and antifungal performance
Types and dosages of antibacterial agents
The antibacterial effect of inorganic antibacterial agents (such as zinc oxide and silver ions) is long-lasting, but it may affect the transparency and mechanical properties of the coating. Organic antibacterial agents (such as quaternary ammonium salts) have a fast antibacterial speed, but their heat resistance and durability are relatively poor. For instance, excessive silver ion content may cause the coating to discolor, and the addition amount of zinc oxide needs to be controlled at 5-10% to balance the antibacterial performance and coating performance.
Characteristics of resin matrix
The glass transition temperature (Tg) and crosslinking density of acrylic resin affect the release rate of antibacterial agents. For example, high Tg resin can slow down the release of antibacterial agents and prolong the antibacterial effect; Moderate crosslinking can enhance the density of the coating and reduce the adhesion of mold. In addition, the stronger the hydrophobicity of the resin, the better its anti-mold performance.
Construction and curing conditions
The temperature and humidity of the construction environment affect the curing effect and antibacterial and antifungal performance of the coating. For instance, curing under low-temperature or high-humidity conditions may lead to uneven internal stress in the coating, reducing its durability. In addition, the curing time and light intensity will also affect the cross-linking and fixation effect of the antibacterial agent.
Fourth, application scenarios of antibacterial and antifungal performance
Medical facilities
The antibacterial performance requirements for coatings in hospital wards, operating rooms and other places are extremely high. For instance, acrylic antibacterial coatings can be applied to walls and furniture surfaces to reduce the risk of bacterial transmission. Such coatings need to have highly efficient antibacterial properties (such as an inhibition rate of ≥99% against Escherichia coli and Staphylococcus aureus) and long-term durability.
Food processing plant
Mold contamination in the food processing environment must be strictly controlled. For instance, acrylic anti-mold coating can be applied to workshop walls and equipment surfaces to prevent mold growth and food contamination. Such coatings need to have chemical resistance (such as resistance to acids, alkalis, and cleaning agents) and low VOC emissions to meet food safety requirements.
Public buildings
The walls and floors in public places such as schools and shopping malls are prone to microbial contamination. For instance, acrylic antibacterial and anti-mold coatings can be applied to frequently touched areas such as bathrooms and elevator buttons, reducing the risk of cross-infection. Such coatings need to be wear-resistant and easy to clean in order to maintain long-term antibacterial effects.
Fifth, strategies for enhancing antibacterial and antifungal performance
Composite antibacterial system
Сложением неорганических антибактериальных агентов с органическими антибактериальными агентами, может быть достигнут антибактериальный эффект широкого спектра. Например, синергетический эффект оксида цинка и четвертичных антибактериальных агентов аммония может одновременно ингибировать рост бактерий и плесени. Кроме того, добавление фотокатализаторов (таких как диоксид титана) может усилить фотокаталитические антибактериальные показатели покрытия.
Поверхностная микроструктура контроль
Регулируя микроскопическую морфологию поверхности покрытия (такую как шероховатость и пористость), адгезия микроорганизмов может быть уменьшена. Например, применение сверхгидрофобной технологии поверхности может сделать угол контакта поверхности покрытия ≥150 °, тем самым ингибируя адгезию споров плесени. Кроме того, конструкция паттерна поверхности может также уменьшить площадь контакта для микроорганизмов.
Долголечие антимолд технологии
The action time of fungicides is prolonged through slow-release technology. For instance, fungicides can be encapsulated in microcapsules, allowing them to be gradually released during the application of the coating, thereby maintaining a long-term fungicidal effect. In addition, adding self-healing materials can enable the coating to automatically repair itself after being damaged and restore its anti-mold performance.